
LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 1

DIGITAL LOGIC AND COMPUTER

ORGANIZATION

II B.TECH I SEMESTER - CSE (AR 23)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY
(An Autonomous Institute, Approved by AICTE & Permanently Affiliated to JNTU-GV,

Vizianagaram)

(Accredited By NAAC with A Grade and Accredited by NBA)

Jonnada (Village), Denkada (Mandal), Vizianagaram District – 535 005

Phone No. 08922-241111, 241112

 E-Mail: lendi_2008@yahoo.com website: www.lendi.org

mailto:lendi_2008@yahoo.com
http://www.lendi.org/

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 2

UNIT – II

Combinational circuits-II: Code Converters, Encoders, Decoders, Multiplexers, De-

multiplexers.

Sequential logic circuits: Flip-Flops (SR, JK, T, D), Excitation tables, conversion of Flip

Flops, Synchronous and Asynchronous counters, Up/Down counters, Modulus Counters

Registers: Bi-directional, Universal Shift Register.

INDEX

S.No Name of the topic Page Number

1 Combinational circuits-II: Code Converters 3

2 Decoders 6

3 De-multiplexers. 8

4 Encoders 10

5 Multiplexers 12

6 Sequential logic circuits 18

7 Flip-Flops (SR, JK, T, D) and Excitation tables 20

8 Conversion of Flip Flops 27

9 Synchronous and Asynchronous counters 29

10 Asynchronous counters (Up/Down counters, Modulus Counters) 34

11 Synchronous counters (Up/Down counters, Modulus Counters) 36

12 Bi-directional Register 45

13 Universal Shift Register 46

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 3

UNIT – II

Combinational circuits-II

CODE CONVERTERS

The availability of a large variety of codes for the same discrete elements of information

results in the use of different codes by different digital systems. It is sometimes necessary to

use the output of one system as the input to another. A conversion circuit must be inserted

between the two systems if each uses different codes for the same information. Thus, a code

converter is a circuit that makes the two systems compatible even though each uses a

different binary code.

To convert from binary code A to binary code B, the input lines must supply the bit

combination of elements as specified by code A and the output lines must generate the

corresponding bit combination of code B. A combinational circuit performs this transformation

by means of logic gates.

BINARY CODED DECIMAL (BCD) TO THE EXCESS-3 CONVERTER

 The design procedure that converts binary coded decimal (BCD) to the excess-3

code for the decimal digits is illustrated here. Since each code uses four bits to represent a

decimal digit, there must be four input variables and four output variables. We designate the

four input binary variables by the symbols A, B, C, and D, and the four output variables by w,

x, y , and z . The truth table relating the input and output variables is shown below. Note that

four binary variables may have 16 bit combinations, but only 10 are listed in the truth table.

The six bit combinations not listed for the input variables are don’t-care combinations. These

values have no meaning in BCD and we assume that they will never occur in actual operation

of the circuit. Therefore, we are at liberty to assign to the output variables either a 1 or a 0,

whichever gives a simpler circuit.

Table: Truth table for BCD to Excess-3 converter

The maps below are plotted to obtain simplified Boolean functions for the outputs. Each

one of the four maps represents one of the four outputs of the circuit as a function of the four

input variables. The 1’s marked inside the squares are obtained from the minterms that make

the output equal to 1. The 1’s are obtained from the truth table by going over the output columns

one at a time. For example, the column under output z has five 1’s; therefore, the map for z has

five 1’s, each being in a square corresponding to the minterm that makes z equal to 1. The six

don’t-care minterms 10 through 15 are marked with an X. One possible way to simplify the

functions into sum-of-products form is listed under the map of each variable.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 4

Figure: Maps for BCD to Excess-3 converter

A two-level logic diagram for each output may be obtained directly from the Boolean

expressions derived from the maps. There are various other possibilities for a logic diagram

that implements this circuit. The expressions obtained above may be manipulated algebraically

for the purpose of using common gates for two or more outputs. This manipulation, shown

next, illustrates the flexibility obtained with multiple-output systems when implemented with

three or more levels of gates:

z = D’

y = CD + C’D’ = CD + (C + D)’

x = B’C + B’D + BC’D’ = B’(C + D) + BC’D’

 = B’(C + D) + B(C + D)’

 w = A + BC + BD = A + B(C + D)

The logic diagram that implements these expressions is shown below. Note that the OR

gate whose output is C + D has been used to implement partially each of three outputs. Not

counting input inverters, the implementation in sum-of-products form requires seven AND

gates and three OR gates. The implementation of logic diagram requires four AND gates, four

OR gates, and one inverter. If only the normal inputs are available, the first implementation

will require inverters for variables B, C, and D, and the second implementation will require

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 5

inverters for variables B and D. Thus, the three-level logic circuit requires fewer gates, all of

which in turn require no more than two inputs.

Figure: Logic diagram for BCD to Excess-3 converter

Example: Design and implement 4 bit binary to Gray converter.

Solution:

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 6

 Logic Equations Logic diagram

DECODERS

Discrete quantities of information are represented in digital systems by binary codes. A

binary code of n bits is capable of representing up to 2n distinct elements of coded information.

A decoder is a combinational circuit that converts binary information from n input lines

to a maximum of 2n unique output lines. If the n -bit coded information has unused

combinations, the decoder may have fewer than 2n outputs.

The decoders presented here are called n -to- m -line decoders, where m ≤ 2n. Their

purpose is to generate the 2n (or fewer) minterms of n input variables. Each combination of

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 7

inputs will assert a unique output. The name decoder is also used in conjunction with other

code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-to-eight-line decoder circuit below. The three

inputs are decoded into eight outputs, each representing one of the minterms of the three input

variables. The three inverters provide the complement of the inputs, and each one of the eight

AND gates generates one of the minterms. A particular application of this decoder is binary-

to-octal conversion. The input variables represent a binary number, and the outputs represent

the eight digits of a number in the octal number system. However, a three-to-eight-line decoder

can be used for decoding any three-bit code to provide eight outputs, one for each element of

the code. The operation of the decoder may be clarified by the truth table listed below. For each

possible input combination, there are seven outputs that are equal to 0 and only one that is equal

to 1. The output whose value is equal to 1 represents the minterm equivalent of the binary

number currently available in the input lines.

Table: Truth table of 3 to 8 line decoder

Figure: 3 to 8 line decoder

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 8

Example: Implement full adder circuit with a decoder and two OR gates.

Solution: From the truth table of the full adder, we obtain the functions for the combinational

circuit in sum-of-minterms form:

S(x, y, z) = Ʃ (1, 2, 4, 7)

C(x, y, z) = Ʃ (3, 5, 6, 7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line decoder.

The implementation is shown below. The decoder generates the eight minterms for x, y, and z.

The OR gate for output S forms the logical sum of minterms 1, 2, 4, and 7. The OR gate for

output C forms the logical sum of minterms 3, 5, 6, and 7.

Figure: Implementation of full adder with a decoder

DE-MULTIPLEXERS.

Some decoders are constructed with NAND gates. Since a NAND gate produces the

AND operation with an inverted output, it becomes more economical to generate the decoder

minterms in their complemented form. Furthermore, decoders include one or more enable

inputs to control the circuit operation. A two-to-four-line decoder with an enable input

constructed with NAND gates is shown below.

Figure: 2 to 4 line decoder with enable (E) input

The circuit operates with complemented outputs and a complement enable input. The

decoder is enabled when E is equal to 0 (i.e., active-low enable). As indicated by the truth table,

only one output can be equal to 0 at any given time; all other outputs are equal to 1. The output

whose value is equal to 0 represents the minterm selected by inputs A and B. The circuit is

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 9

disabled when E is equal to 1, regardless of the values of the other two inputs. When the circuit

is disabled, none of the outputs are equal to 0 and none of the minterms are selected. In general,

a decoder may operate with complemented or uncomplemented outputs. The enable input may

be activated with a 0 or with a 1 signal. Some decoders have two or more enable inputs that

must satisfy a given logic condition in order to enable the circuit.

A decoder with enable input can function as a demultiplexer— a circuit that

receives information from a single line and directs it to one of 2n possible output lines. The

selection of a specific output is controlled by the bit combination of n selection lines. The below

decoder can function as a one-to-four-line demultiplexer when E is taken as a data input line,

A and B are taken as the selection inputs. The single input variable E has a path to all four

outputs, but the input information is directed to only one of the output lines, as specified by the

binary combination of the two selection lines A and B. This feature can be verified from the

truth table of the circuit.

For example, if the selection lines AB = 10, output D2 will be the same as the input

value E, while all other outputs are maintained at 1. Because decoder and demultiplexer

operations are obtained from the same circuit, a decoder with an enable input is referred to as

a decoder – demultiplexer. It is the enable input that makes the circuit a demultiplexer; the

decoder itself can use AND, NAND, or NOR gates.

Figure: Block diagram of decoder with enable and Demultiplexer

Decoders with enable inputs can be connected together to form a larger decoder circuit.

The below figure shows two 3-to-8-line decoders with enable inputs connected to form a 4-to-

16-line decoder. When w = 0, the top decoder is enabled and the other is disabled. The bottom

decoder outputs are all 0’s, and the top eight outputs generate minterms 0000 to 0111. When

w = 1, the enable conditions are reversed: The bottom decoder outputs generate minterms 1000

to 1111, while the outputs of the top decoder are all 0’s.

This example demonstrates the usefulness of enable inputs in decoders and other

combinational logic components. In general, enable inputs are a convenient feature for

interconnecting two or more standard components for the purpose of combining them into

a similar function with more inputs and outputs.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 10

 Figure: 4 * 16 decoder constructed with two 3 * 8 decoders

ENCODERS

An encoder is a digital circuit that performs the inverse operation of a decoder. An

encoder has 2n (or fewer) input lines and n output lines. The output lines, as an aggregate,

generate the binary code corresponding to the input value. An example of an encoder is the

octal-to-binary encoder whose truth table is given below. It has eight inputs (one for each of

the octal digits) and three outputs that generate the corresponding binary number. It is assumed

that only one input has a value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly

from the truth table. Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7. Output y

is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can

be expressed by the following Boolean output functions:

z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7

 Table: Truth table for Octal to binary encoder

The encoder can be implemented with three OR gates as shown below. The encoder

defined in above table has the limitation that only one input can be active at any given

time. If two inputs are active simultaneously, the output produces an undefined combination.

For example, if D3 and D6 are 1 simultaneously, the output of the encoder will be 111

because all three outputs are equal to 1. The output 111 does not represent either binary

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 11

3 or binary 6. To resolve this ambiguity, encoder circuits must establish an input priority to

ensure that only one input is encoded. If we establish a higher priority for inputs with higher

subscript numbers, and if both D3 and D6 are 1 at the same time, the output will be 110 because

D6 has higher priority than D3.

Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is

generated when all the inputs are 0; but this output is the same as when D0 is equal to 1. The

discrepancy can be resolved by providing one more output to indicate whether at least one input

is equal to 1.

Figure: Octal to binary encoder

PRIORITY ENCODER

A priority encoder is an encoder circuit that includes the priority function. The

operation of the priority encoder is such that if two or more inputs are equal to 1 at the same

time, the input having the highest priority will take precedence. The truth table of a four-

input priority encoder is given in below table. In addition to the two outputs x and y, the circuit

has a third output designated by V; this is a valid bit indicator that is set to 1 when one or

more inputs are equal to 1.

If all inputs are 0, there is no valid input and V is equal to 0. The other two outputs are

not inspected when V equals 0 and are specified as don’t-care conditions. Note that whereas

X’s in output columns represent don’t-care conditions, the X’s in the input columns are useful

for representing a truth table in condensed form. Instead of listing all 16 minterms of four

variables, the truth table uses an X to represent either 1 or 0. For example, X 100 represents

the two minterms 0100 and 1100.

 Table: Truth table of a priority encoder

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 12

According to above truth table, the higher the subscript number, the higher the priority of the

input. Input D3 has the highest priority, so, regardless of the values of the other inputs, when

this input is 1, the output for xy is 11 (binary 3). D2 has the next priority level. The output is

10 if D2 = 1, provided that D3 = 0, regardless of the values of the other two lower priority

inputs. The output for D1 is generated only if higher priority inputs are 0, and so on down the

priority levels.

The maps for simplifying outputs x and y are shown below. The minterms for the two

functions are derived from above truth table. Although the table has only five rows, when each

X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input combinations.

For example, the fourth row in the table, with inputs XX10, represents the four minterms 0010,

0110, 1010, and 1110.

Figure: Maps for a priority encoder

 The simplified Boolean expressions for the priority encoder are obtained from the

maps. The condition for output V is an OR function of all the input variables. The priority

encoder is implemented below according to the following Boolean functions:

x = D2 + D3

y = D3 + D1 D’2

V = D0 + D1 + D2 + D3

Figure: 4 input priority encoder

MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of

many input lines and directs it to a single output line. The selection of a particular input line

is controlled by a set of selection lines. Normally, there are 2n input lines and n selection lines

whose bit combinations determine which input is selected.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 13

A two-to-one-line multiplexer connects one of two 1-bit sources to a common

destination, as shown below. The circuit has two data input lines, one output line, and one

selection line S. When S = 0, the upper AND gate is enabled and I0 has a path to the output.

When S = 1, the lower AND gate is enabled and I1 has a path to the output. The multiplexer

acts like an electronic switch that selects one of two sources. The block diagram of a

multiplexer is sometimes depicted by a wedge-shaped symbol, as shown in Fig. (b). It suggests

visually how a selected one of multiple data sources is directed into a single destination. The

multiplexer is often labeled “MUX” in block diagrams.

Figure: Two – to - one line multiplexer

A four-to-one-line multiplexer is shown below. Each of the four inputs, I0 through I3,

is applied to one input of an AND gate. Selection lines S1 and S0 are decoded to select a

particular AND gate. The outputs of the AND gates are applied to a single OR gate that

provides the one-line output. The function table lists the input that is passed to the output for

each combination of the binary selection values. To demonstrate the operation of the circuit,

consider the case when S1S0 = 10. The AND gate associated with input I2 has two of its inputs

equal to 1 and the third input connected to I2. The other three AND gates have at least one input

equal to 0, which makes their outputs equal to 0. The output of the OR gate is now equal to the

value of I2, providing a path from the selected input to the output. A multiplexer is also called

a data selector, since it selects one of many inputs and steers the binary information to the

output line.

Figure: Four – to - one line multiplexer

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 14

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,

they decode the selection input lines. In general, a 2n -to-1-line multiplexer is constructed

from an n -to-2n decoder by adding 2n input lines to it, one to each AND gate. The outputs

of the AND gates are applied to a single OR gate. The size of a multiplexer is specified by the

number 2n of its data input lines and the single output line. The n selection lines are implied

from the 2n data lines.

 As in decoders, multiplexers may have an enable input to control the operation of

the unit. When the enable input is in the inactive state, the outputs are disabled, and when

it is in the active state, the circuit functions as a normal multiplexer.

Multiplexer circuits can be combined with common selection inputs to provide

multiple-bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown

below. The circuit has four multiplexers, each capable of selecting one of two input lines.

Output Y0 can be selected to come from either input A0 or input B0. Similarly, output Y1 may

have the value of A1 or B1, and so on. Input selection line S selects one of the lines in each of

the four multiplexers. The enable input E must be active (i.e., asserted) for normal operation.

Although the circuit contains four 2-to-1-line multiplexers, we are more likely to view

it as a circuit that selects one of two 4-bit sets of data lines. As shown in the function table, the

unit is enabled when E = 0. Then, if S = 0, the four A inputs have a path to the four outputs. If,

by contrast, S = 1, the four B inputs are applied to the outputs. The outputs have all 0’s when

E = 1, regardless of the value of S.

Figure: Quadruple two-to-one-line multiplexer

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 15

Boolean Function Implementation

An examination of the logic diagram of a multiplexer reveals that it is essentially a

decoder that includes the OR gate within the unit. The minterms of a function are

generated in a multiplexer by the circuit associated with the selection inputs. The

individual minterms can be selected by the data inputs, thereby providing a method of

implementing a Boolean function of n variables with a multiplexer that has n selection inputs

and 2n data inputs, one for each minterm.

An efficient method for implementing a Boolean function of n variables with a

multiplexer that has n - 1 selection inputs is shown here. The first n-1 variables of the function

are connected to the selection inputs of the multiplexer. The remaining single variable of the

function is used for the data inputs. If the single variable is denoted by z, each data input of the

multiplexer will be z, z’, 1, or 0.

Example: Implement the Boolean function F (x, y, z) = Ʃ (1, 2, 6, 7) with a 4 to 1 multiplexer.

Solution: The given function of three variables can be implemented with a four-to-one-line

multiplexer as shown below. The two variables x and y are applied to the selection lines in

that order; x is connected to the S1 input and y to the S0 input. The values for the data input

lines are determined from the truth table of the function. When xy = 00, output F is equal to z

because F = 0 when z = 0 and F = 1 when z = 1. This requires that variable z be applied to data

input 0. The operation of the multiplexer is such that when xy = 00, data input 0 has a path to

the output, and that makes F equal to z. In a similar fashion, we can determine the required

input to data lines 1, 2, and 3 from the value of F when xy = 01, 10, and 11, respectively. This

particular example shows all four possibilities that can be obtained for the data inputs.

The general procedure for implementing any Boolean function of n variables with a

multiplexer with n -1 selection inputs and 2n-1 data inputs follows from the above example. To

begin with, Boolean function is listed in a truth table. Then first n - 1 variables in the table are

applied to the selection inputs of the multiplexer. For each combination of the selection

variables, we evaluate the output as a function of the last variable. This function can be 0, 1,

the variable, or the complement of the variable. These values are then applied to the data inputs

in the proper order.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 16

Example: Implement the Boolean function F (x, y, z) = Ʃ (1, 3, 5, 6) with a 4 to 1 multiplexer.

Solution:

Example: Implement the Boolean function F (x, y, z) = Ʃ (1, 2, 4, 5) with a 4 to 1 multiplexer.

Solution:

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 17

Example: Implement the Boolean function F (A, B, C, D) = Ʃ (1, 3, 4, 11, 12, 13, 14, 15) with

8 to 1 multiplexer.

Solution:

Given function is implemented with a multiplexer with three selection inputs as shown

in above. Note that the first variable A must be connected to selection input S2 so that A, B,

and C correspond to selection inputs S2, S1, and S0, respectively. The values for the data inputs

are determined from the truth table listed below. The corresponding data line number is

determined from the binary combination of ABC. For example, the table shows that when ABC

= 101, F = D, so the input variable D is applied to data input 5. The binary constants 0 and 1

correspond to two fixed signal values.

Example: Implement the Boolean function F (A, B, C, D) = Ʃ (0, 1, 3, 4, 8, 9, 15) with 8 to 1

multiplexer.

Solution:

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 18

SEQUENTIAL LOGIC CIRCUITS

INTRODUCTION:
Earlier we studied the digital circuits whose output at any instant of time are entirely

dependent on the input present at that time. Such circuits are called as combinational circuits

on the other hand sequential circuits are those in which the output at any instant of time is

determined by the applied input and past history of these inputs (i.e. present state).
Alternately, sequential circuits are those in which output at any given time is not only

dependent on the input, present at that time but also on previous outputs. Naturally, such

circuits must record the previous outputs. This gives rise to memory. Often, there are

requirements of digital circuits whose output remain unchanged, once set, even if the inputs

are removed. Such devices are referred as “memory elements”, each of which can hold 1-bit of

information. These binary bits can be retained in the memory indefinitely (as long as power is

delivered) or until new information is feeded to the circuit.

A combinational logic circuit that consists of inputs variable (X), logic gates

(Computational circuit), and output variable (Z).

Figure: Block diagram of Combinational circuit

Combinational circuit produces an output based on input variable only, but Sequential

circuit produces an output based on current input and previous (past) input variables. That

means sequential circuits include memory elements which are capable of storing binary

information. That binary information defines the state of the sequential circuit at that time. A

latch capable of storing one bit of information.

Figure: Block diagram of Sequential circuit

As shown in figure there are two types of input to the combinational logic:

1. External inputs which not controlled by the circuit.

2. Internal inputs which are a function of a previous output states.

Secondary inputs are state variables produced by the storage elements, whereas secondary

outputs are excitations for the storage elements.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 19

Combinational Circuits Sequential Circuits

Outputs depend only on present inputs. Outputs depend on both present inputs and

present state.

Feedback path is not present. Feedback path is present.

Memory elements are not required. Memory elements are required.

Clock signal is not required. Clock signal is required.

Easy to design. Difficult to design.

Types of Sequential Circuits – There are two types of sequential circuit:

1. Asynchronous sequential circuit – These circuit do not use a clock signal but uses the

pulses of the inputs. These circuits are faster than synchronous sequential circuits because

there is clock pulse and change their state immediately when there is a change in the input

signal. We use asynchronous sequential circuits when speed of operation is important and

independent of internal clock pulse.

Figure: Asynchronous sequential circuit

But these circuits are more difficult to design and their output is uncertain.

2. Synchronous sequential circuit – These circuit uses clock signal and level inputs (or

pulsed) (with restrictions on pulse width and circuit propagation). The output pulse is the same

duration as the clock pulse for the clocked sequential circuits. Since they wait for the next clock

pulse to arrive to perform the next operation, so these circuits are bit slower compared to

asynchronous. Level output changes state at the start of an input pulse and remains in that until

the next input or clock pulse.

Figure: Synchronous sequential circuit

We use synchronous sequential circuit in synchronous counters, flip flops, and in the

design of MOORE-MEALY state management machines. We use sequential circuits to design

Counters, Registers, RAM, MOORE/MEALY Machine and other state retaining machines.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 20

Synchronous sequential circuits Asynchronous sequential circuits
In synchronous circuits, memory elements

are clocked FFs.

In asynchronous circuits, memory elements

are either un-clocked FFs or time delay

elements.

The change in input signals can affect

memory elements upon activation of clock

signal.

The change in input signals can affect

memory elements at any instant of time.

The maximum operating speed of the clock

depends on time delays involved.

Because of the absence of the clock,

asynchronous circuits can operate faster than

synchronous circuits

Easier to design. More difficult to design.

LATCHES AND FLIP-FLOPS:
There are two types of memory elements based on the type of triggering that is suitable to

operate it.

• Latches

• Flip-flops

Differences between Flip flops and Latches:

Flip- flops Latches

Flip flop is a bistable device, it has two states

(0 and 1).

Latch is also a bistable device, it has two

states (0 and 1).

It checks the inputs but changes the output

only at times defined by the clock signal or

other control signal.

It checks the inputs continuously and

responds to changes in inputs immediately.

It is an edge triggered device. It is a level triggered device.

Gates like NOR, NAND, NOT, AND are

building blocks of flip flops.

These are also made up of logic gates

These are classified in to synchronous and

asynchronous flip flops.

There is no such classification in latches.

These forms the building blocks of many

sequential circuits like registers and

counters.

These can be used for the designing of

sequential circuits but are not generally

preferred.

Always have a clock signal. Doesn’t have a clock signal.

Flip flops can be built from latches Latches can be built from gates.

Ex: SR, D, JK, T- flip flops Ex: SR, D, JK, T- Latches

Latches operate with enable signal, which is level sensitive. Whereas, flip-flops are

edge sensitive.

Edge triggered Flip-Flops:
1. Positive Edge triggered Flip flop

2. Negative Edge triggered Flip flop

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 21

Figure: Logic symbols for positive and negative edge triggered flip-flops

POSITIVE EDGE TRIGGERED SR FLIP FLOP:

Case-1: Set = Reset = 0
This is the normal state of the FF and it has no effect on the output state. Q and Q’ will remain

in whatever they were prior to the occurrence of this input condition.

Case-2: Set = 0, Reset = 1
This will always set Q=0, where it will remain even after SET returns to 0, so Reset state

occurs.

Case-3: Set = 1, Reset = 0
This will always set Q=1, where it will remain even after RESET returns to 1, so Set state

occurs.

Case-4: Set = Reset = 1

This condition tries to SET and RESET the FF at the same time, and it produces Q = Q’ =0. If

the inputs are returned to zero simultaneously, the resulting output state is erratic and

unpredictable. This input condition should not be used. It is forbidden.

(a) Logic diagram using NAND gates (b) Logic symbol

 (c) Truth table of positive edge triggered SR-FF

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 22

(d) Timing diagram of positive edge triggered SR- FF

 (e) Characteristic table (f) Excitation table

(g) Characteristic equation

Figure: Positive edge triggered SR- Flip flop

POSITIVE EDGE TRIGGERED D FLIP FLOP:

Case-1: D = 0
From this condition we get Qn+1’ as 1. So the next state Qn+1 is 0. As the resultant is 0 it is

known reset condition.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 23

Case-2: D = 1

From this condition we get Qn+1 as 1. So this known as set condition.

(a) Logic diagram (b) Logic symbol

 (c) Truth table (d) Characteristic table (e) Excitation table

(f) Characteristic equation

Figure: Positive edge triggered D- Flip flop

EDGE TRIGGERED JK FLIP FLOP:

Case 1: J = 0, K = 0
This is the normal state of the FF and it has no effect on the output state. Q and Not Q will

remain in whatever they were prior to the occurrence of this input condition.

Case 2: J = 0, K = 1
This will always set Q=0, where it will remain even after SET returns to 0

Case 3: J = 1, K = 0
This will always Reset Q=1, where it will remain even after RESET returns to 0

Case 4: J = 1, K = 1
This condition is known as toggle condition. Since the process continues by getting alternating

output i.e. frequently changing.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 24

(a) Logic diagram (b) Logic symbol (Negative edge triggered)

(c) Truth table (d) Characteristic table

 (e) Excitation table (f) Characteristic equation

(g) Timing diagram of negative edge triggered JK- Flip flop

Figure: Edge triggered JK- Flip flop

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 25

EDGE TRIGGERED T FLIP FLOP:

Case 1: T = 0

The next state is equal to the present state. This is known as present state condition.

Case 2: T = 1

Here the output is complemented to the input. This is known as toggle condition.

 (c) Truth table (d) Characteristic table (e) Excitation table

(f) Characteristic equation

Characteristic equations for all the FF:

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 26

Race around Condition in JK Flip Flop:

 Before getting into the race around condition, let us have a look at the JK flip-flop’s

truth table.

Here, Q is the present state and Q’ is the next state. As you can see, when J, K and Clock are

equal to 1, toggling takes place, i.e. the next state will be equal to the complement of the present

state.

Now, let us look at the timing diagram of JK flip-flop.

Here, T is the time period of the clock whereas Δ (Delta) t is the propagation delay. The

delay between input and output is called a propagation delay. This is what was expected, but

the output may not be like this all the time. This is where Race around condition comes into

the play.

Let us look at the timing diagram of JK flip-flop when the race around condition is

considered.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 27

As you already know, when J, K and Clock are equal to 1, toggling takes place. Here,

propagation delay has also been reduced, so the output will be given out at the instant input is

given. So there is a toggling again. Therefore, whenever Clock is equal to 1 there are

consecutive toggling. This condition is called as Race around condition.

 For JK flip-flop if J, K and Clock are equal to 1 the state of flip-flop keeps on toggling

which leads to uncertainty in determining the output of the flip-flop. This problem is called

Race around the condition. This condition also exists in T flip-flop since T flip-flop also has

toggling options.

CONVERSION OF FLIP FLOPS:
The four flip-flops, namely SR flip-flop, D flip-flop, JK flip-flop & T flip-flop, can convert

one flip-flop into the remaining three flip-flops by including some additional logic. So, there

will be total of twelve flip-flop conversions.

Step 1: Identify the available and required FF.

Step 2: Make the characteristic Table for required Flip Flop.

Step 3: Make the Excitation table for available Flip Flop.

Step 4: Write Boolean Expression for available Flip Flop.

Step 5: Draw the Corresponding Logic Circuit.

1. SR FLIP FLOP TO JK FLIP FLOP:

Step 1: Identify the available and required FF.

Available→SR Flip Flop

Required ---------→JK Flip Flop

Step 2: Make the characteristic Table for required Flip Flop.

Step 3: Make the Excitation table for available Flip Flop.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 28

Step 4: Write Boolean Expression for available Flip Flop.

Step 5: Draw the Corresponding Logic Circuit.

2. JK FLIP FLOP TO T FLIP FLOP:

Step 1: Identify the available and required FF.

Available → JK Flip Flop

Required → T Flip Flop

Step 2: Make the characteristic Table for required Flip Flop.

Step 3: Make the Excitation table for available Flip Flop.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 29

Step 4: Write Boolean Expression for available Flip Flop.

Step 5: Draw the Corresponding Logic Circuit.

SYNCHRONOUS AND ASYNCHRONOUS COUNTERS:

COUNTERS

Counter is a device which stores (and sometimes displays) the number of times

particular event or process has occurred, often in relationship to a clock signal. A Digital

counter is a set of flip flops whose state change in response to pulses applied at the input to the

counter. Counters may be asynchronous counters or synchronous counters. Asynchronous

counters are also called ripple counters.

In electronics, counters can be implemented quite easily using register-type circuits

such as the flip-flops and a wide variety of classifications exist:

• Asynchronous (ripple) counter – changing state bits are used as clocks to subsequent state

flip-flops.

• Synchronous counter – all state bits change under control of a single clock.

• Decade counter – counts through ten states per stage.

• Up/down counter – counts both up and down, under command of a control input

• Ring counter – formed by a shift register with feedback connection in a ring

• Johnson counter – a twisted ring counter

• Cascaded counter

• Modulus counter

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 30

SYNCHRONOUS COUNTER ASYNCHRONOUS COUNTER

In synchronous counter, all flip flops are

triggered with same clock simultaneously.

In asynchronous counter, different flip flops are

triggered with different clock, not

simultaneously.

Synchronous counter is faster than

asynchronous counter in operation.

Asynchronous counter is slower than

synchronous counter in operation.

Synchronous counter does not produce

any decoding errors.

Asynchronous counter produces decoding error.

Synchronous counter is also called

Parallel Counter.

Asynchronous counter is also called Serial

Counter.

Synchronous counter designing as well

implementation are complex due to

increasing the number of states.

Asynchronous counter designing as well as

implementation is very easy.

Synchronous counter will operate in any

desired count sequence.

Asynchronous counter will operate only in fixed

count sequence (UP/DOWN).

Synchronous counter examples are: Ring

counter, Johnson counter.

Asynchronous counter examples are: Ripple UP

counter, Ripple DOWN counter.

In synchronous counter, propagation

delay is less.

In asynchronous counter, there is high

propagation delay.

A counter may be an up/down counter.

- An Up counter will count numbers from small to high in up direction.

- And Down counter will count numbers from high to low in down direction.

Each of the counts of the counter is called the state of the counter.

The number of states through which the counter passes before returning to the starting state is

called the modulus counter.

Each is useful for different applications. Usually, counter circuits are digital in nature,

and count in natural binary Many types of counter circuits are available as digital building

blocks, for example a number of chips in the 4000 series implement different counters.

Occasionally there are advantages to using a counting sequence other than the natural

binary sequence such as the binary coded decimal counter, a linear feed-back shift register

counter, or a Gray-code counter.

Counters are useful for digital clocks and timers, and in oven timers, VCR clocks, etc.

ASYNCHRONOUS COUNTERS:

An asynchronous (ripple) counter is a single JK-type flip-flop, with its J (data) input

fed from its own inverted output. This circuit can store one bit, and hence can count from zero

to one before it overflows (starts over from 0). This counter will increment once for every clock

cycle and takes two clock cycles to overflow, so every cycle it will alternate between a

transition from 0 to 1 and a transition from 1 to 0. Notice that this creates a new clock with a

50% duty cycle at exactly half the frequency of the input clock. If this output is then used as

the clock signal for a similarly arranged D flip-flop (remembering to invert the output to the

input), one will get another 1 bit counter that counts half as fast. Putting them together yields

a two-bit counter.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 31

TWO-BIT RIPPLE UP-COUNTER USING NEGATIVE EDGE TRIGGERED FLIP

FLOP:
The two-bit ripple counter uses two flip-flops. There are four possible states from 2 –

bit up- counting i.e. 00, 01, 10 and 11 (counting from 0, 1, 2, 3). For a flip flop we are having

bubble at clock it means the negative edge triggered FF. In this First FF output Q1 is connected

as clock to the next FF so it is called as up counter using negative edge triggered. The counter

is initially assumed to be at a reset state 00.

When the first clock pulse is applied FF1 toggles at the negative –going edge of this

pulse, therefore, Q1 goes from LOW to HIGH. This becomes a positive –going signal at the

clock input of FF2 is not affected, and hence the state of the counter after one clock pulse is

Q1=1 and Q2=0 i.e., state 01.

 At the negative –going edge of the second clock pulse, FF1 toggles. So, Q1 goes from

HIGH to LOW. This becomes a negative –going signal at the clock input of FF2 and hence Q2

goes from LOW to HIGH. Therefore, the state of the counter after second clock pulse is Q1=0

and Q2=1 i.e., state 10.

At the negative –going edge of the third clock pulse, FF1 toggles. So, Q1 goes from

LOW to HIGH. This becomes a positive –going signal at the clock input of FF2 and is not

affected. Therefore, the state of the counter after third clock pulse is Q1=1 and Q2=1 i.e., state

11.

At the negative –going edge of the fourth clock pulse, FF1 toggles. So, Q1 goes from

HIGH to LOW HIGH. This becomes a negative –going signal at the clock input of FF2 and

toggles. Therefore, the state of the counter after fourth clock pulse is Q1=0 and Q2=0 i.e., state

00.

The above process repeats between 00→01→10→11 →00 →01 →10and so on. So it means

that it is like mod 4 counter running from 0 to 3 and again from starting.

 Figure: Asynchronous 2-bit ripple up-counter using negative edge triggered flip flop

TWO-BIT RIPPLE DOWN-COUNTER USING NEGATIVE EDGE TRIGGERED

FLIP FLOP:

 The two-bit ripple counter uses two flip-flops. There are four possible states from 2

– bit down- counting I.e. 11, 10, 01 and 00 (counting from 3, 2, 1, 0). For a flip flop we are

having bubble at clock it means the negative edge triggered FF. In this First FF output Q1 is

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 32

connected as clock to the next FF so it is called as down counter using negative edge

triggered. The counter is initially assumed to be at a reset state 00.

 When the first clock pulse is applied FF1 toggles at the negative –going edge of this

pulse, therefore, Q1 goes from LOW to HIGH and Q1 goes from a 1 to 0. This becomes a

negative –going signal Q1 applied at the clock input of FF2 and toggles from 0 to a 1 and hence

the state of the counter after one clock pulse is Q2=1 and Q1=1 i.e., state 11.

 At the negative –going edge of the second clock pulse, FF1 toggles. So, Q1 goes from

HIGH to LOW. Therefore, Q2 remains at 1. Hence, the state of the counter after second clock

pulse is state10.

At the negative –going edge of the third clock pulse, FF1 toggles. So, Q1 goes from

LOW to HIGH. And Q1 from a 1 to a 0. This becomes a negative –going signal at the clock

input of FF2 so Q2 changes from a 1 to 0. Therefore, the state of the counter after third clock

pulse is Q1=1 and Q2=0 i.e., state 01.

 At the negative –going edge of the fourth clock pulse, FF1 toggles. So, Q1 goes from

HIGH to LOW HIGH and Q1 from a 0 to a 1. This becomes a positive –going signal at the

clock input of FF2 is not affected. Therefore, the state of the counter after fourth clock pulse is

Q1=0 and Q2=0 i.e., state 00.

The above process repeats between 00 → 11 → 10 → 01→ 00 → 11 →10 so on. So it

means that it is like mod 4 counter running from 3 to 0 and again from starting.

 Figure: Asynchronous 2-bit ripple down-counter using negative edge triggered flip flop

TWO-BIT RIPPLE UP-DOWN COUNTER USING NEGATIVE EDGE TRIGGERED

FLIP FLOP:
As the name indicates an up-down counter is a counter which can count both in upward

and downward directions. An up-down counter is also called a forward/backward counter or a

bidirectional counter. So, a control signal or a mode signal M is required to choose the direction

of count. When M=1 for up counting, Q1 is transmitted to clock of FF2 and when M=0 for

down counting, Q1’ is transmitted to clock of FF2. This is achieved by using two AND gates

and one OR gates. The external clock signal is applied to FF1.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 33

Figure: Asynchronous 2-bit ripple up-down counter using negative edge triggered flip flop

Two-bit ripple up-counter using positive edge triggered flip flop:
The two-bit ripple counter uses two flip-flops. There are four possible states from 2 –

bit up- counting i.e. 00, 01, 10 and 11 (counting from 0, 1, 2, 3). For a flip flop we are not

having bubble at clock it means the positive edge triggered FF.

In this First FF output Q1 is connected as clock to the next FF so it is called as up

counter using positive edge triggered. The counter is initially assumed to be at a reset state

00. FF1 toggles at the positive going edge of each clock pulse and FF2 toggles whenever Q1’

changes from a 0 to a 1. State transitions occur at the positive – going edges of the clock pulses.

The counting sequence is 00, 01, 10, 11, 00, 01, 10, 11 etc.

 Figure: Asynchronous 2-bit ripple up-counter using positive edge triggered flip flop

Two-bit ripple down-counter using positive edge triggered flip flop:
The two-bit ripple counter uses two flip-flops. There are four possible states from 2 –

bit down- counting I.e. 11, 10, 01 and 00 (counting from 3, 2, 1, 0). For a flip flop we are not

having bubble at clock it means the positive edge triggered FF.

In this First FF output Q1 is connected as clock to the next FF so it is called as down

counter using positive edge triggered. The counter is initially assumed to be at a reset state

00. FF1 toggles at the positive going edge of each clock pulse and FF2 toggles whenever Q1’

changes from a 0 to a 1. State transitions occur at the positive – going edges of the clock pulses.

The counting sequence is 00, 11, 10, 01, 00, 11, 10, 11 etc.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 34

 Figure: Asynchronous 2-bit ripple down-counter using positive edge triggered flip flop

Two-bit ripple up-down counter using positive edge triggered flip flop:
As the name indicates an up-down counter is a counter which can count both in upward

and downward directions. An up-down counter is also called a forward/backward counter or a

bidirectional counter. So, a control signal or a mode signal M is required to choose the direction

of count. When M=1 for up counting, Q1’ is transmitted to clock of FF2 and when M=0 for

down counting, Q1 is transmitted to clock of FF2. This is achieved by using two AND gates

and one OR gates. The external clock signal is applied to FF1.

 Figure: Asynchronous 2-bit ripple up-down counter using positive edge triggered flip flop

DESIGN OF ASYNCHRONOUS COUNTERS:

To design an asynchronous counter, first we write the sequence, then tabulate the values

of reset signal R for various states of the counter and obtain the minimal expression for R and

R’ using K-Map or any other method. Provide a feedback such that R and R’ resets all the FF’s

after the desired count.

DESIGN OF A MOD-6 ASYNCHRONOUS COUNTER USING T FFS:

A mod-6 counter has six stable states 000, 001, 010, 011, 100, and 101. When the sixth

clock pulse is applied, the counter temporarily goes to 110 state, but immediately resets to 000

because of the feedback provided. It is ―divide by-6-counter, in the sense that it divides the

input clock frequency by 6. It requires three FFs, because the smallest value of n satisfying the

condition N ≤ 2n is n=3; three FFs can have 8 possible states, out of which only six are utilized

and the remaining two states 110 and 111, are invalid. If initially the counter is in 000 state,

then after the sixth clock pulse, it goes to 001, after the second clock pulse, it goes to 010, and

so on.

After sixth clock pulse it goes to 000. For the design, write the truth table with present

state outputs Q3, Q2 and Q1 as the variables, and reset R as the output and obtain an expression

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 35

for R in terms of Q3, Q2, and Q1that decides the feedback into be provided. From the truth

table, R=Q3Q2. For active-low Reset, R’ is used. The reset pulse is of very short duration, of

the order of nanoseconds and it is equal to the propagation delay time of the NAND gate used.

The expression for R can also be determined as follows.

Therefore,

 R= 0 for 000 to 101, R=1 for 110, and R =X = for111

 R = Q3Q2Q1’+ Q3Q2Q1 = Q3Q2

The logic diagram, timing diagram and truth table of Mod-6 counter is shown in the below

figure.

Figure: Asynchronous Mod-6 counter using T- Flip flops

DESIGN OF A MOD-10 ASYNCHRONOUS COUNTER USING T-FLIP-FLOPS:

A mod-10 counter is a decade counter. It also called a BCD counter or a divide-by-10

counter. It requires four flip-flops (condition 10 ≤ 2n is n = 4). So, there are 16 possible states,

out of which ten are valid and remaining six are invalid. The counter has ten stable state, 0000

through 1001, i.e., it counts from 0 to 9. The initial state is 0000 and after nine clock pulses it

goes to 1001. When the tenth clock pulse is applied, the counter goes to state 1010 temporarily,

but because of the feedback provided, it resets to initial state 0000. So, there will be a glitch in

the waveform of Q2. The state 1010 is a temporary state for which the reset signal R=1, R=0

for 0000 to 1001, and R = C for 1011 to 1111.

The count table and the K-Map for reset are shown in below figure. From the K-Map

R = Q4Q2. So, feedback is provided from second and fourth FFs. For active –HIGH reset,

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 36

Q4Q2 is applied to the clear terminal. For active-LOW reset Q4Q2 is connected is of all Flip-

flops.

Figure: Asynchronous Mod-10 counter using T- Flip flops

SYNCHRONOUS COUNTERS:
Asynchronous counters are serial counters. They are slow because each FF can

change state only if all the preceding FFs have changed their state. If the clock frequency is

very high, the asynchronous counter may skip some of the states. This problem is overcome in

synchronous counters or parallel counters. Synchronous counters are counters in which

all the flip flops are triggered simultaneously by the clock pulses. Synchronous counters

have a common clock pulse applied simultaneously to all flip-flop.

Design of synchronous counters:
For a systematic design of synchronous counters. The following procedure is used.

Step 1: Number of Flip-flops: Based on the description of the problem, determine the required

number n of the flip-flops, the smallest value of n is such that the number of states N ≤ 2n and

the desired counting sequence.

Step 2: State Diagram: Draw the state diagram showing all the possible states state diagram

which also be called nth transition diagrams, is a graphical means of depicting the sequence of

states through which the counter progresses.

Step 3: Choice of Flip-flops excitation table: Select the type of flip-flop to be used and write

the excitation table. An excitation table is a table that lists the present state (PS), the next state

(NS) and required excitations.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 37

Step 4: Minimal expressions for excitations: Obtain the minimal expressions for the

excitations of the FF using K-maps drawn for the excitation of the flip-flops in terms of the

present states and inputs.

Step 5: Logic diagram: Draw a logic diagram based on the minimal expressions.

 Figure: Excitation of various Flip-flops

DESIGN OF SYNCHRONOUS 3-BIT UP COUNTER:

Step 1: Determine the number of flip-flops required: A 3-bit up counter requires three FFs.

It has 8 states (000, 001, 010, 011, 100, 101, 110, 111, and 000) and all the states are valid.

Step 2: Draw the state diagrams: The state diagram of the 3-bit up counter is drawn as shown

in the below figure.

Figure: State diagram of synchronous 3-bit up-counter

Step 3: Select the type of flip flop and draw the excitation table: JK flip-flops are selected

and the excitation table of a 3-bit up- counter using JK flip-flops is drawn as shown in the

below figure.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 38

Figure: Excitation table of synchronous 3-bit up-counter

Step 4: Obtain the minimal expressions: From the excitation table we can conclude that J1=1

and K1=1, because all the entries for J1and K1 are either X or 1. The K-maps for J3, K3, J2

and K2 based on the excitation table and the minimal expression obtained from them are shown

in the below figure.

Figure: K-map minimization of synchronous 3-bit up-counter

Step 5: Draw the logic diagram: The logic diagram using those minimal expressions can be

drawn as shown in the below figure.

Figure: Logic diagram of synchronous 3-bit up counter

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 39

DESIGN OF SYNCHRONOUS 3-BIT DOWN COUNTER:

Step 1: Determine the number of flip-flops required: A 3-bit down counter requires three

FFs. It has 8 states (000, 111, 110, 101, 100, 011, 010, 001, 000) and all the states are valid.

Step 2: Draw the state diagrams: the state diagram of the 3-bit down counter is drawn as

shown in the below figure.

Figure: State diagram of synchronous 3-bit down counter

Step 3: Select the type of flip flop and draw the excitation table: JK flip-flops are selected

and the excitation table of a 3-bit down- counter using JK flip-flops is drawn as shown in the

below figure.

Figure: K-map minimization of synchronous 3-bit down counter

Step 4: Obtain the minimal expressions: From the excitation table we can conclude that J1=1

and K1=1, because all the entries for J1and K1 are either X or 1. The K-maps for J3, K3, J2

and K2 based on the excitation table and the minimal expression obtained from them are shown

in the below figure.

Figure: K-map minimization of synchronous 3-bit down counter

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 40

Step 5: Draw the logic diagram: A logic diagram using those minimal expressions can be

drawn as shown in the below figure.

DESIGN OF A SYNCHRONOUS 3-BIT UP-DOWN COUNTER USING JK FLIP-

FLOPS:
Step 1: Determine the number of flip-flops required: A 3-bit counter requires three FFs. It

has 8 states (000,001,010,011,101,110,111) and all the states are valid. Hence no don‘t cares.

For selecting up and down modes, a control or mode signal M is required. When the mode

signal M=1 and counts down when M=0. The clock signal is applied to all the FFs

simultaneously.

Step 2: Draw the state diagrams: The state diagram of the 3-bit up-down counter is drawn as

shown in figure.

Figure: State diagram of synchronous 3-bit up-down counter

Step 3: Select the type of flip flop and draw the excitation table: JK flip-flops are selected

and the excitation table of a 3-bit up-down counter using JK flip-flops is drawn as shown in

figure.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 41

Figure: Excitation table of synchronous 3-bit up-down counter

Step 4: Obtain the minimal expressions: From the excitation table we can conclude that J1=1

and K1=1, because all the entries for J1and K1 are either X or 1. The K-maps for J3, K3, J2

and K2 based on the excitation table and the minimal expression obtained from them are shown

in below figure.

Figure: K-map minimization of synchronous 3-bit up-down counter

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 42

Step 5: Draw the logic diagram: Logic diagram using those minimal expressions can be

drawn as shown in figure.

Figure: Logic diagram of synchronous 3-bit up-down counter

DESIGN OF SYNCHRONOUS MODULO-10 UP/DOWN COUNTER USING T FFS:

Step 1: Determine the number of flip-flops required: A modulo-10 has 10 states and so it

requires 4 FFs. (10 ≤ 24).

4 FF can have 16 states. So out of 16, six states are invalid (1010 through 1111).

 M=1 → Up Counter

 M=0 → Down Counter

Step 2: Draw the state diagrams: The state diagram of the mod-10 up/down counter is drawn

as shown in the below figure.

Figure: State diagram of synchronous mod-10 up-down counter

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 43

Step 3: Select the type of flip flop and draw the excitation table: T flip-flops are selected

and the excitation table of modulo 10 up/down- counter using T flip-flops is drawn as shown

in the below figure.

Figure: Excitation table of synchronous mod-10 up-down counter

Step 4: Obtain the minimal expressions: From the excitation table we can conclude that T=1,

because all the entries for T1 are 1. The K-maps T4, T3 and T2 based on the excitation table.
In the K-maps, the remaining minterms are don’t cares (Ʃd (20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31))

From the excitation table we can see that T1 = 1 and the expression for T4, T3, and T2 are

 T4 = Ʃm (0, 15, 16, 19) + d (20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)

 T3 = Ʃm (7, 8, 15, 16) + d (20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)

 T2 = Ʃm (3, 4, 7, 8, 11, 12, 15, 16) + d (20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)

The minimal expression for T2 obtained by minimizing the K-map is given below.

T2 = Q4𝑸𝟏̅̅ ̅̅ �̅�+𝑸𝟒̅̅ ̅̅ Q1M+Q2𝑸𝟏̅̅ ̅̅ M+Q3𝑸𝟏̅̅ ̅̅ M

Step5: Draw the logic diagram: A logic diagram using those minimal expressions can be

drawn as shown in the below figure.

Figure: Logic diagram of synchronous mod-10 up-down counter

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 44

DESIGN OF MODULO-9 SYNCHRONOUS COUNTER USING T FFS:

Step 1: Determine the number of flip-flops required: A modulo 9 counter requires four FFs.

It has 9 states (0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 0000……) all the states

are valid. There are invalid from 1001 to 1111.

Step 2: Draw the state diagrams: the state diagram of the mod-9 counter is drawn as shown

in the below figure.

Figure: State diagram of synchronous modulo-9 counter

Step 3: Select the type of flip flop and draw the excitation table: T flip-flops are selected

and the excitation table of a mod 9 counter using T flip-flops is drawn as shown in the below

figure.

Figure: Excitation table of synchronous modulo-9 counter

Step 4: Obtain the minimal expressions: The K-maps for excitations T4, T3, T2, and T1 in

terms of the outputs of the FFs Q4, Q3, Q2, and Q1 their minimization and the minimal

expressions for excitation obtained from them are shown in the below figure.

Figure: K-map minimization of synchronous modulo-9 counter using T- flip flops

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 45

Step5: Draw the logic diagram: A logic diagram using those minimal expressions can be

drawn as shown in the below figure.

Figure: Logic diagram of synchronous modulo-9 counter using T- flip flops

REGISTERS

An n-bit register is a cascade of n flip-flops and can store an n-bit binary data.

BIDIRECTIONAL SHIFT REGISTER:

A bidirectional shift register is one which the data bits can be shifted from left to right

or from right to left. A figure shows the logic diagram of a 4-bit serial-in, serial out,

bidirectional shift register. Right/left is the mode signal, when right /𝐥𝐞𝐟𝐭̅̅ ̅̅ ̅ is a 1, the logic

circuit works as a shift right-register. When right /𝐥𝐞𝐟𝐭̅̅ ̅̅ ̅ is a 0, the logic circuit works as a

shift left-register.

 Figure: Logic diagram of 4 bit bidirectional shift register

The bidirectional operation is achieved by using the mode signal and two AND gates and one

OR gate for each stage. A HIGH on the right /𝐥𝐞𝐟𝐭̅̅ ̅̅ ̅ control input enables the AND gates G1,

G2, G3 and G4 and disables the AND gates G5, G6, G7 and G8, and the state of Q output

of each FF is passed through the gate to the D input of the following FF. when a clock

pulse occurs, the data bits are then effectively shifted one place to the right.

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 46

A LOW on the right /𝐥𝐞𝐟𝐭̅̅ ̅̅ ̅ control input enables the AND gates G5, G6, G7 and G8 and

disables the AND gates G1, G2, G3 and G4 and the Q output of each FF is passed to the D

input of the preceding FF. when a clock pulse occurs, the data bits are then effectively shifted

one place to the left. Hence, the circuit works as a bidirectional shift register.

UNIVERSAL SHIFT REGISTER:

A register is capable of shifting in one direction only is a unidirectional shift register.

One that can shift both directions is a bidirectional shift register. If the register has both shifts

and parallel load capabilities, it is referred to as a universal shift registers. Universal shift

register is a bidirectional register, whose input can be either in serial form or in parallel form

and whose output also can be in serial form or in parallel form.

The most general shift register has the following capabilities.

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

3. A shift-right control to enable the shift-right operation and serial input and output lines

associated with the shift-right.

4. A shift-left control to enable the shift-left operation and serial input and output lines

associated with the shift-left.

5. A parallel loads control to enable a parallel transfer and the n input lines associated with the

parallel transfer.

6. N parallel output lines

7. A control state that leaves the information in the register unchanged in the presence of the

clock.

A universal shift register can be realized using multiplexers. The below figure shows

the logic diagram of a 4-bit universal shift register that has all capabilities.

 Figure: 4-bit universal shift register

It consists of 4 D flip-flops and four multiplexers. The four multiplexers have two

common selection inputs S1 and S0. Input 0 in each multiplexer is selected when S1S0=00,

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DL&CO Unit-2

II-I CSE (AR23) P a g e | 47

input 1 is selected when S1S0=01 and input 2 is selected when S1S0=10 and input 3 is selected

when S1S0=11.

 The selection inputs control the mode of operation of the register according to the

functions entries. When S1S0=0, the present value of the register is applied to the D inputs

of flip-flops. The condition forms a path from the output of each flip-flop into the input of the

same flip-flop. The next clock edge transfers into each flip-flop the binary value it held

previously, and no change of state occurs.

When S1S0=01, terminal 1 of the multiplexer inputs have a path to the D inputs of the

flip-flop. This causes a shift-right operation, with serial input transferred into flip-flop4.

When S1S0=10, a shift left operation results with the other serial input going into flip-

flop A1.

 Finally, when S1S0=11, the binary information on the parallel input lines is transferred

into the register simultaneously during the next clock edge.

Applications of Shift Registers:

1. Time Delays

2. Serial / Parallel data conversion

3. Ring Counters

4. UART (Universal asynchronous receiver transmitter)

5. The shift registers are used for temporary data storage.

6. The shift registers are also used for data transfer and data manipulation.

7. The serial-in serial-out and parallel-in parallel-out shift registers are used to produce time

delay to digital circuits.

8. The serial-in parallel-out shift register is used to convert serial data into parallel data thus

they are used in communication lines where de-multiplexing of a data line into several parallel

line is required.

9. A Parallel in Serial out shift register us used to convert parallel data to serial data.

